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A consistent physical and mathematical model of propagation of electromagnetic waves in layered media, in
which the induced surface charge is not explicitly taken into account, has been constructed on the basis of
Maxwell equations, the total-current continuum equation, and the Dirichlet theorem. A numerical method of
through counting for solving the system of equations defining layered media has been developed and substan-
tiated. Examples of numerical simulation of the propagation of an electromagnetic wave in a two-dimensional
cellular structure and the propagation of a modulated signal in a one-dimensional layered medium on condi-
tion that the current flows at the interfaces between the adjacent media are dependent are presented.
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Introduction. Let us consider the interface S between two media having different electrophysical properties.
On each of its side the magnetic-field and magnetic-inductance vectors as well as the electric-field and electric-dis-
placement vectors are finite and continuous; however, at the surface S they can experience a discontinuity of the first
kind. Moreover, at the interface there arise induced surface charges σ and surface currents i (whose vectors lie in the
plane tangential to the surface S) under the action of an external electric field.

The existence of a surface charge at the interface S between the two media having different electrophysical
properties is dramatically illustrated by the following example. We will consider the traverse of a direct current
through a flat capacitor filled with two dielectric materials having relative permittivities ε1 and ε2 and electric conduc-
tivities λ1 and λ2. A direct-current voltage U is applied to the capacitor plates; the total resistance of the capacitor is
R (Fig. 1). It is proposed to calculate the surface electric charge induced by the electric current.

From the electric-charge conservation law follows the constancy of flow in a circuit; therefore, the following
equation is fulfilled:

λ1En
1
 = λ2En

2
 = U ⁄ (RS) , (1)

where En1
 and En2

 are the normal components of the electric-field vector.
At the interface between the dielectrics the normal components of the electric-inductance vector change spas-

modically under the action of the electric field by a value equal to the value of the induced surface charge σ:

ε0ε1En1
 − ε0ε2En2

 = σ . (2)

Solving the system of Eqs. (1), (2), we obtain the expression for σ

σ = (U ⁄ RS) ε0 [(ε1
 ⁄ λ1) − (ε2

 ⁄ λ2)] . (3)

Journal of Engineering Physics and Thermophysics, Vol. 82, No. 4, 2009

aA. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str.,
Minsk, 220072, Belarus; email: nngrin@yandex.ru; bBelarusian State Institute of Information Science and Radio Elec-
tronics, 6 P. Brovka Str., Minsk, 220013; cA. D. Sakharov International State Ecological University, 23 Dolgobrod-
skaya Str., Minsk, 220070; dBelarusian State University, 4 Nezavisimost’ Ave., Minsk, 220030, Belarus. Translated
from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 4, pp. 810–817, July–August, 2009. Original article submitted April
18, 2008.

1062-0125/09/8204-0810�2009 Springer Science+Business Media, Inc.810



It follows from (3) that the charge σ is determined by the current and the multiplier accounting for the properties of
the medium. If

(ε1
 ⁄ λ1) − (ε2

 ⁄ λ2) = 0 , (4)

a surface charge σ is not formed. What is more, recent trends are toward increased use of micromachines and engines
made from plastic materials, where the appearance of a surface charge is undesirable. For oiling of elements of such
machines, it is best to use an oil with a permittivity εoil satisfying the relation

ε1 < εoil < ε2 . (5)

This oil makes it possible to decrease the electrization of the moving machine parts made from dielectric materials. In
addition to the charge σ, a contact potential difference arises always independently of the current.

An electric field interacting with a materials is investigated with the use of the Maxwell equation (1857)

jtotal = ∇ × H ,   ∇⋅D = ρ ; (6)

− 
∂B
∂t

 = ∇ × E ,   ∇⋅B = 0 ,
(7)

where jtotal = λE + 
∂D
∂t

; B = μμ0H; D = εε0E. In this case, at the interface S the above system of equations is supple-

mented with the boundary conditions [1, 2]

Dn1
 − Dn2

 = σ , (8)

Eτ1
 − Eτ2

 = 0 , (9)

Bn1
 − Bn2

 = 0 , (10)

Hτ1
 − Hτ2

 = (iτ × n) . (11)

The indices n and τ denote the normal and tangential components of the vectors to the surface S, and the indices 1
and 2 denote the adjacent media with different electrophysical properties. The index τ denotes any direction tangential
to the discontinuity surface. At the same time, a closing relation is absent for the induced surface charge σ, which

Fig. 1. Dielectric media inside a flat capacitor.
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generates a need for the introduction of an impedance matrix [1–23] that is determined experimentally or, in some
cases, theoretically from the quantum representations [5, 10, 21–23].

The induced surface charge σ not only characterizes the properties of a surface, but also represents a
function of the process, i.e., σ(E(∂E ⁄ ∂t, H(∂H ⁄ ∂t))); therefore, the surface impedances [1–24] are true for the con-
ditions under which they are determined. These impedances cannot be used in experiments conducted under other
experimental conditions.

We will show that σ can be calculated using the Maxwell phenomenological macroscopic electromagnetic
equations and the electric-charge conservation law accounting for the characteristics of the interface between the adja-
cent media.

Physical and Mathematical Model. We will formulate a physical and mathematical model of propagation of
an electromagnetic field in a layered medium. Let us multiply the left and right sides of the equation for the total cur-
rent (6) by μ0μ and differentiate it with respect to time. Acting by the operator rot on the left and right sides of the
first equation of (7) on condition that μ = const we obtain

∂jtotal

∂t
 = 

1

μ
 ∇2E − 

1

μ
 grad (div E) . (12)

In Cartesian coordinates, (12) will take the form

∂jtotalx

∂t
 = 

1

μ
 
⎛
⎜
⎝

∂2
Ex

∂x
2  + 

∂2
Ex

∂y
2  + 

∂2
Ex

∂z
2

⎞
⎟
⎠
 − 

1

μ
 
∂

∂x
 
⎛
⎜
⎝

∂Ex

∂x
 + 
∂Ey

∂y
 + 

∂Ez

∂z

⎞
⎟
⎠
 , (13)

∂jtotaly

∂t
 = 

1

μ
 
⎛
⎜
⎝

∂2
Ey

∂x
2  + 

∂2
Ey

∂y
2  + 

∂2
Ey

∂z
2

⎞
⎟
⎠
 − 

1
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∂
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⎛
⎜
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∂Ex
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 + 
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 + 

∂Ez
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⎞
⎟
⎠
 , (14)

∂jtotalz

∂t
 = 

1

μ
 
⎛
⎜
⎝

∂2
Ez

∂x
2  + 

∂2
Ez

∂y
2  + 

∂2
Ez

∂z
2

⎞
⎟
⎠
 − 

1
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∂
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⎛
⎜
⎝

∂Ex

∂x
 + 
∂Ey

∂y
 + 

∂Ez

∂z

⎞
⎟
⎠
 . (15)

At the interface, the following relation [2] is also true:

div iτ + Iqx1
 − Iqx2

 = − 
∂σ
∂t

 . (16)

Let us write conditions (8)–(11) in the Cartesian coordinate system:

Dx1
 − Dx2

 = σ , (17)

Ey1
 − Ey2

 = 0 , (18)

Ez1
 − Ez2

 = 0 , (19)

Bx1
 − Bx2

 = 0 , (20)

Hy1
 − Hy2

 = iz , (21)
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Hz1
 − Hz2

 = iy , (22)

where iτ = iyj + izk is the surface-current density, and the coordinate x is directed along the normal to the interface.
The densities iy and iz of the surface currents represent the electric charge carried in unit time by a segment of unit
length positioned on the surface drawing the current perpendicularly to its direction.

The order of the system of differential equations (13)–(15) is equal to 18. Therefore, at the interface S, it is
necessary to set, by and large, nine boundary conditions. Moreover, the three additional conditions (17), (21), and (22)
containing (prior to the solution) unknown quantities should be fulfilled at this interface. Consequently, the total num-
ber of conjugation conditions at the boundary S should be equal to 12 for a correct solution of the problem.

Differentiating expression (17) with respect to time and using relation (16), we obtain the following condition
for the normal components of the total current at the medium-medium interface:

div iτ + jtotalx1
 = jtotalx2

 , (23)

that allows one to disregard the surface charge σ. Let us introduce the arbitrary function f:  [f]⏐x=ξ = f1⏐x=ξ+0 −
f2⏐x=ξ−0. In this case, expression (23) will take the form

[div iτ + jtotalx]⏐x=ξ = 0 . (24)

It is assumed that, at the medium-medium interface, Ex is a continuous function of y and z. Then, differenti-
ating (23) with respect to y and z, we obtain

⎡
⎢
⎣

∂
∂y

 jtotalx
⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = − 
∂ (div iτ)

∂y
 , (25)

⎡
⎢
⎣

∂
∂z

 jtotalx
⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = − 
∂ (div iτ)

∂z
 . (26)

Let us differentiate conditions (20)–(22) for the magnetic induction and the magnetic-field strength with respect to
time. On condition that B = μμ0H,

⎡
⎢
⎣

∂Bx

∂t

⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = 0 ,   
⎡
⎢
⎣

1

μμ0
 
∂By

∂t

⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = 
∂iz
∂t

 ,   
⎡
⎢
⎣

1

μμ0
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∂t

⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = 
∂iy
∂t

 . (27)

Using Eq. (7) and expressing (27) in terms of projections of the electric-field rotor, we obtain

[rotxE]⏐x=ξ = 0   and   
⎡
⎢
⎣

∂Ez

∂y
 − 
∂Ey

∂z

⎤
⎥
⎦

⎪
⎪
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 = 0 , (28)
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∂iz
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∂iz
∂t

 . (30)

Here, (28) is the normal projection of the electric-field rotor, (29) is the tangential projection of the rotor on y, and
(30) is the rotor projection on z.
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Assuming that Ey and Ez are continuous differentiable functions of the coordinates y and z, from conditions
(18) and (19) we find

⎡
⎢
⎣

∂Ey

∂y

⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = 0 ,   
⎡
⎢
⎣

∂Ey

∂z

⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = 0 ; (31)

⎡
⎢
⎣

∂Ez

∂y

⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = 0 ,   
⎡
⎢
⎣

∂Ez

∂z

⎤
⎥
⎦

⎪
⎪
⎪x=ξ

 = 0 . (32)

In accordance with the condition that the tangential projections of the electric field on z and y are equal and
in accordance with conditions (18) and (19), the expressions for the densities of the surface currents iz and iy take the
form

iz = λ
__

Ez⏐x=ξ ,   iy = λ
__

Ey⏐x=ξ , (33)

where

λ
__

 = 
1
2

 (λ1 + λ2)⏐x=ξ (34)

is the average value of the electrical conduction at the interface between the adjacent media in accordance with the
Dirichlet theorem for a piecewise-smooth, piecewise-differentiable function.

With allowance for the foregoing we have twelve conditions at the interface between the adjacent media that
are necessary for solving the complete system of equations (13)–(15):

a) the functions Ey and Ez are determined from Eqs. (18) and (19);
b) Ex is determined from condition (24);
c) the values of ∂Ex

 ⁄ ∂y, ∂Ex
 ⁄ ∂z, and ∂Ex

 ⁄ ∂x are determined from relations (25) and (26) with the use of the
condition of continuity of the total-current normal component at the interface (24) and the continuity of the derivative
of the total current with respect to the coordinate x;

d) the values of ∂Ey
 ⁄ ∂y, ∂Ey

 ⁄ ∂z, and ∂Ez
 ⁄ ∂z are determined from conditions (31) and (32) in consequence of

the continuity of the tangential components of the electric field along y and z;
e) the derivatives ∂Ey

 ⁄ ∂x and ∂Ez
 ⁄ ∂x are determined from conditions (29) and (30) as a consequence of the

equality of the tangential components of the electric-field rotor along y and z.
Note that condition (23) was used by us in [25] in the numerical simulation of the pulsed electrochemical

processes in the one-dimensional case. Condition (28) for the normal component of the electric-field rotor represents a
linear combination of conditions (31) and (32); therefore, rotxE = 0 and there is no need to use it in the subsequent
discussion. The specificity of the expression for the general law of electric-charge conservation at the interface is that
the components ∂Ey

 ⁄ ∂y and ∂Ez
 ⁄ ∂z are determined from conditions (31) and (32) that follow from the equality and

continuity of the tangential components Ey and Ez at the boundary S.
Thus, at the interface between the adjacent media the following conditions are fulfilled: the equality of the

total-current normal components; the equality of the tangential projections of the electric-field rotor; the electric-charge
conservation law; the equality of the electric-field tangential components and their derivatives in the tangential direc-
tion; the equality of the derivatives of the total-current normal components in the direction tangential to the interface
between the adjacent media, determined with account for the surface currents and without explicit introduction of a
surface charge. They are true at each cross section of the sample being investigated.

Features of Calculation of the Propagation of Electromagnetic Waves in Layered Media. The electro-
magnetic effects arising at the interface between different media under the action of plane electromagnetic waves
have a profound impact on the equipment because all the real means are fenced in surfaces and are inhomogeneous
in the space. At the same time, the study of the propagation of waves in layered conducting media and, according
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to [26, p. 687–689], in thin films is reduced to the calculation of the reflection and transmission coefficients; the
function E(x) is not determined in the thickness of a film, i.e., the geometrical-optics approximation is used.

The physical and mathematical model proposed allows one to investigate the propagation of an electromag-
netic wave in a layered medium without recource to the assumptions used in [1–26].

Since conditions (23)–(32) are true at each cross section of a layered medium, we will use schemes of
through counting without an explicit definition of the interface between the media. In this case, it is proposed to cal-
culate Exi

 at the interface in the following way.
In accordance with (17), Ex1

 ≠ Ex2
, i.e., Ex(x) experiences a discontinuity of the first kind. Let us determine

the strength of the electric field at the discontinuity point x = ξ on condition that Ex(x) is a piecewise-smooth,
piecewise-differentiable function having finite one-sided derivatives Ex+

′ (x) and Ex−
′ (x). At the discontinuity points xi,

Ex
+′ (xi) =  lim

Δxi→+0
  

E (xi + Δxi) − E (xi + 0)
Δxi

 , (35)

Ex
−′ (xi) =  lim

Δxi→  −0
  

E (xi + Δxi) − E (xi − 0)
Δxi

 . (36)

In this case, in accordance with the Dirichlet theorem [27, p. 255–256], the Fourier series of the function E(x) at each
point x, including the discontinuity point ξ, converges and its sum is equal to

Ex=ξ = 
1
2

 [E (ξ − 0) + E (ξ + 0)] . (37)

The Dirichlet condition (37) also has a physical meaning. In the case of contact of two solid conductors, e.g.,
dielectrics or electrolytes in different combinations (metal–electrolyte, dielectric–electrolyte, metal–vacuum, and so on),
at the interface between the adjacent media there always arises an electric double layer (EDL) with an unknown (as a
rule) structure that, however, substantially influences the electrokinetic effects, the rate of the electrochemical processes,
and so on. It is significant that, in reality, the electrophysical characteristics λ, ε, and E(x) change uninterruptedly in the
electric double layer; therefore, (37) is true for the case where the thickness of the electric double layer, i.e., the thick-
ness of the interphase boundary, is much smaller than the characteristic size of a homogeneous medium. In a compos-
ite, e.g., in a metal with embedments of dielectric balls, where the concentration of both components is fairly large and
their characteristic sizes are small, the interphase boundaries can overlap and condition (37) can break down.

If the thickness of the electric double layer is much smaller than the characteristic size L of an object, (37)
also follows from the condition that E(x) changes linearly in the EDL region. In reality, the thickness of the electric
double layer depends on the kind of contacting materials and can comprise several tens of angstro

..
ms [28, p. 239]. In

accordance with the modern views, the outer coat of the electric double layer consists of two parts, the first of which
is formed by the ions immediately attracted to the surface of the metal (a "dense" or a "Helmholtz" layer of thickness
h), and the second is formed by the ions separated by distances larger than the ion radius from the surface of the
layer, and the number of these ions decreases as the distance between them and the interface (the "diffusion layer")
increases. The distribution of the potential in the dense and diffusion parts of the electric double layer is exponential
in actual practice [28], i.e., the condition that E(x) changes linearly breaks down; in this case, the sum of the charges
of the dense and diffusion parts of the outer coat of the electric double layer is equal to the charge of its inner coat
(the metal surface). However, if the thickness of the electric double layer h is much smaller than the characteristic size
of an object, the expansion of E(x) into a power series is valid and one can restrict oneself to the consideration of a
linear approximation. In accordance with the more general Dirichlet theorem (1829), a knowledge of this function in
the EDL region is not necessary to substantiate (37). Nonetheless, the above-indicated physical features of the electric
double layer lend support to the validity of condition (37).

The condition at interfaces, analogous to (37), has been obtain earlier [29, p. 353] for the potential field
(where rot E = 0) on the basis of introduction of the surface potential, the use of the Green formula, and the consid-
eration of the discontinuity of the potential of the double layer. In [29, p. 356], it is also noted that the consideration
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of the thickness of the double layer and the change in its potential at h ⁄ L << 1 makes no sense in general; therefore,
it is advantageous to consider, instead of the volume potential, the surface potential of any density. Condition (37) can
be obtained, as was shown in [27], from the more general Dirichlet theorem for a nonpotential vorticity field [29].

Thus, the foregoing and the validity of conditions (17)–(19) and (25)–(32) at each cross section of a layered
medium show that, for numerical solution of the problem being considered it is advantageous to use schemes of
through counting and make the discretization of the medium in such a way that the boundaries of the layers have
common points.

The medium was divided into finite elements so that the nodes of a finite-element grid, lying on the separa-
tion surface between the media with different electrophysical properties, were shared by these media at a time. In this
case, the total currents or the current flows at the interface should be equal if the Dirichlet condition (37) is fulfilled.

Results of Numerical Simulation of the Propagation of Electromagnetic Waves in Layered Media. Let us
analyze the propagation of an electromagnetic wave through a layered medium that consists of several layers with dif-
ferent electrophysical properties in the case where an electromagnetic-radiation source is positioned on the upper plane
of the medium. It is assumed that the normal component of the electric-field vector Ex = 0 and its tangential compo-
nent Ey = a sin (ωt), where a is the electromagnetic-wave amplitude (Fig. 2).

In this example, for the purpose of correct specification of the conditions at the lower boundary of the me-
dium, an additional layer is introduced downstream of layer 6; this layer has a larger conductivity and, therefore, the
electromagnetic wave is damped out rapidly in it. In this case, the condition Ey = Ez = 0 can be set at the lower
boundary of the medium. The above manipulations were made to limit the size of the medium being considered be-
cause, in the general case, the electromagnetic wave is attenuated completely at an infinite distance from the electro-
magnetic-radiation source.

Numerical calculations of the propagation of an electromagnetic wave in the layered medium with electro-
physical parameters ε1 = ε2 = 1, λ1 = 100, λ2 = 1000, and μ1 = μ2 = 1 were carried out. Two values of the cyclic
frequency ω = 2π ⁄ T were used: in the first case, the electromagnetic-wave frequency was assumed to be equal to ω
= 1014 Hz (infrared radiation), and, in the second case, the cyclic frequency was taken to be ω = 109 Hz (radiofre-
quency radiation).

As a result of the numerical solution of the system of equations (13)–(15) with the use of conditions S (24)–
(34) at the interfaces, we obtained the time dependences of the electric-field strength at different distances from the
surface of the layered medium (Fig. 3).

Fig. 2. Scheme of a layered medium: layers 1, 3, and 5 are characterized by
the electrophysical parameters ε1, λ1, and μ1, and layers 2, 4, and 6 — by
ε2, λ2, μ2.

Fig. 3. Time change in the tangential component of the electric-field strength
at a distance of 1 μm (1), 5 μm (2), and 10 μm (3) from the surface of the
medium at λ1 = 100, λ2 = 1000, ε1 = ε2 = 1, μ1 = μ2 = 1, and ω = 1014 Hz.
t, sec.
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The results of our simulation (Fig. 4) have shown that a high-frequency electromagnetic wave propagating in
a layered medium is damped out rapidly, whereas, a low-frequency electromagnetic wave penetrates into such a me-
dium to a greater depth. The model developed was also used for calculating the propagation of a modulated signal of
frequency 20 kHz in a layered medium. As a result of our simulation (Fig. 5), we obtained changes in the electric-
field strength at different depths of the layered medium, which points to the fact that the model proposed can be used
to advantage for calculating the propagation of polyharmonic waves in layered media; such a calculation cannot be
performed on the basis of the Helmholtz equation.

The physical and mathematical model developed can be also used to advantage for simulation of the propaga-
tion of electromagnetic waves in media with complex geometric parameters and large discontinuities of the electromag-
netic field (Fig. 6).

Figure 6a shows the cross-sectional view of a cellular structure representing a set of parallelepipeds with dif-
ferent cross sections in the form of squares. The parameters of the materials in the large parallelepiped are denoted by
index 1, and the parameters of the materials in the small parallelepipeds (the squares in the figure) are denoted by
index 2.

An electromagnetic wave propagates in the parallelepipeds (channels) in the transverse direction. It is seen
from Fig. 6b that, in the cellular structure there are "silence regions," where the amplitude of the electromagnetic-wave

Fig. 4. Distribution of the amplitude of the electric-field-strength at the cross
section of the layered medium: ω = 1014 (1) and 109 Hz (2). y, μm.

Fig. 5. Time change in the electric-field strength at a distance of 1 (1), 5 (2),
and 10 μm (3) from the surface of the medium. t, sec.

Fig. 6. Distribution of the amplitude of the electric-field strength in the two-
dimensional medium (a) and in depth (b) at ε1 = 15, ε2 = 20, λ1 = 10−6, λ2
= 10, μ1 = μ2 = 1, and ω = 109 Hz (the dark background denotes medium 1,
and the light background — medium 2). x, y, mm; E, V ⁄ m.
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strength is close to zero, as well as inner regions where the signal has a marked value downstream of the "silence"
zone formed as a result of the interference.

Conclusions. We were the first to construct a consistent physical and mathematical model of propagation of
electromagnetic waves in layered media without recourse to the matrices of the induced-surface-charge impedances.
This model is based on the Maxwell equations, the electric-charge conservation law, the total-current continuity, and
the Dirichlet theorem. Our numerical investigations have shown that the physical and mathematical model proposed
can be used to advantage for simulation of the propagation of a high-frequency electromagnetic wave in a medium
consisting of layers having different electrophysical properties.

The authors express their gratitude to Corresponding Member N. V. Pavlyukevich for a useful discussion of
the work.

This work was carried out with financial support from the Belarusian Republic Basic Research Foundation
(grant T06P-089).

NOTATION

B, magnetic induction, Wb ⁄ m2; D, electric displacement, C ⁄ m2; E, electric-field strength, V ⁄ m; H, magnetic-
field strength, A ⁄ m; h, thickness of the electric double layer, m; Iqx1

, Iqx2
, normal components of the conduction cur-

rent in media 1 and 2, C ⁄ (m2⋅sec); iτ, surface current, A ⁄ m; i, j, k, unit vectors of the orthonormal basis; jtotal, total

current, A ⁄ m2; L, size of a sample, m; n, unit vector normal to the separation surface; R, resistance, Ω; S, interface
between the adjacent media; T, period of oscillations, sec; t, time, sec; U, voltage, V; x, y, z, Cartesian coordinates; ε,

relative permittivity; ε0, electric constant, 8.58⋅10−12 F ⁄ m; λ, conductivity, Ω⋅m; λ
__

, average conductivity, Ω⋅m; μ, rela-

tive magnetic permeability; μ0, magnetic constant, 4π⋅10−7 H ⁄ m; ξ, discontinuity point; ρ, specific electric charge,

C ⁄ m2; σ, density of the surface charge, C/m2; ∇ � 
∂
∂x

 + 
∂
∂y

 + 
∂
∂z

; [f]⏐x=ξ ≡ f1⏐x=ξ+0 − f2⏐x=ξ−0. Subscripts: 1, the first

medium; 2, the second medium; n, τ, directions normal and tangential to the separation surface; x, normal component
of a vector; y, z, tangential components of a vector at the interface between the adjacent media; oil, oil; total, total; i,
number of a grid node.
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